

Dynamics to develop a new molecule and product Stewardship matters

DAFF Minor Crops 2018 Stakeholders Workshop, ARC VOPI

Andre Broeksma

Regulatory pressure at European level

● Many active substances being lost due to the review programme

The Challenge of developing Plant Protection Products

 (\mathbf{b})

Development: The challenging task of transferring Research into Products

Optimal profile for crop protection product

 High and sustainable efficacy: New Mode of Action 		Favourable environmental profile:
 Broad and high efficacy High selectivity Knock down effect Residual efficacy High plant compatibility 		 Beneficial friendly Good degradation (metabolism) Low application rate Low drift
SystemicityLow resistance risk	Innovative	 Low mobility in soil Low residues
	agricultural product	
 High operator safety: Low application rates Low acute toxicity Ease of application Suitable for formulations Compatibility to other pesticides Storage stability 		 High profitability: Favourable cost-benefit ratio Adapted to IPM programs Unique selling propositions Portfolio fit Competitiveness Fast registration Patent protection

From Idea to Market

● After 8 to 10 years and an average investment of about €200 million, one compound out of 100,000 substances reaches the market

The general process of identification and optimization of active ingredient

Example of a test plate in target based screening

positive controls

test compounds

Hit = active substance inhibiting the function of the target (mode of action)

The target based approach is fully integrated and is one part of the early discovery workflow – but hits have to overcome the *in vivo* hurdle

Primary Screening – Spray booth system

Fieldscreening in Early Phases - Insights into Potency of Compounds under Natural Conditions

Important tool for differentiation of top ranking compounds in a chemical class – direct guidance for chemistry in optimization

Development processes

- Formulation
- Biological profiling
- Toxicology
- Metabolism and E-Fate (MEF)
- Residues, Operator and Consumer Safety (ROCS)
- Ecotoxicology

Working Areas in Product Development

Formulation Technology Convenient and Robust Allowing registration Producible at industrial scale Compatible with applications Biological profiling Demonstrating technical profile Basis for marketing concepts Demonstration of additional benefits e.g. Plant health

Human Safety Residues of active ingredients / metabolites in animals & plants Risk of products for operator & consumer

Environmental Safety

Metabolism of active ingredients / metabolites in animals & plants Environmental fate Ecotoxicological behavior

Regulatory Affairs Active ingredients and products Compilation of dossiers Aligning with regulatory community Influencing external regulatory community

Formulation – Why do we need it?

How can we treat an area of a rugby field (>1 ha) with a few grams of active ingredient?

Agrochemical + supplementary components = Formulation

Project Discovery 1.1/1.2

Project Realization Phase 3

Formulation - Major challenges

Water is the most common carrier for the distribution of agrochemicals **Problem:** Most active ingredients are not easily soluble in water Solution: Formulation technology must provide the active for: easy dilution in water even distribution on the crop optimal biological performance easy and safe handling lowest environmental impact

Agrochemical + supplementary components = Formulation

Working Areas in Product Development

Formulation Technology Convenient and Robust Allowing registration Producible at industrial scale Compatible with applications Agronomic Development Demonstrating technical profile Basis for marketing concepts Demonstration of additional benefits e.g. Plant health

Human Safety Residues of active ingredients / metabolites in animals & plants Risk of products for operator & consumer Environmental Safety Metabolism of active ingredients / metabolites in animals & plants Environmental fate Ecotoxicological behavior

Regulatory Affairs Active ingredients and products Compilation of dossiers Aligning with regulatory community Influencing external regulatory community

Human Safety: Conduct of Residue Studies

Application & Sampling

Residue Analysis

5 trial locations (1x rate) 4-5 points (breakdown curve) 1 µg/kg = 1 ppb = 1 part in 1 billion 1 mm of 1000 km 1 wrong letter in 4000 bibles

Human Safety: Conduct of Operator Exposure Studies

"Artificial skin"

<complex-block>

Clothes and "skin"

Human Safety: Exposure and the Food Chain

Exposure scenarios cover the entire Food chain Residues are measured in all affected food types Food of plant origin Processed food

Food of animal origin

Working Areas in Product Development

Formulation Technology Convenient and Robust Allowing registration Producible at industrial scale Compatible with applications

Human Safety Residues of active ingredients / metabolites in animals & plants Risk of products for operator & consumer Demonstrating technical profile Basis for marketing concepts Demonstration of additional benefits e.g. Plant health

Agronomic Development

Environmental Safety Metabolism of active ingredients / metabolites in animals & plants Environmental fate Ecotoxicological behavior

Regulatory Affairs Active ingredients and products Compilation of dossiers Aligning with regulatory community Influencing external regulatory community

Ecotoxicology: Studies and Risk Assessment to Demonstrate Environmental Safety of **Products Non-Target**

Outdoor pond facility

Non-Target Plants

Aquatic macrophytes pond study

Arthropods = "Gliederfüßer"; Insects, spiders etc. Vertebrates = "Wirbeltiere",

amphibia, reptiles, birds, mammals

Arthropods & Bees

Semi-field honey bee study

Project Discovery

1.2

Project Realization

P/hase/3

Earthworm field study

Terrestrial Vertebrates

Business Realization

Phase 4

Ecotoxicological Risk Assessment

Metabolism

Ecotox

E- 701

Metabolic pathways

Relevant metabolites

Behavior of compound and metabolites in the environment

> PEC: Predicted environmental concentrations

> > **Ecotoxicological effects**

Toxicological effects Tox endpoints

Measured concentrations in the environment: soil, water

Analysis of animals from ETX studies: birds, mice, earth worm, etc...

⇒ Ecotoxicological risk assessment

Residu

Acceptable uses may involve minimal exposure to a product during application

- Terrestrial, <u>foliar application via</u> <u>downward-directed boom sprayers</u> (either tractor-driven or selfpropelled), in which the applicator is protected within a <u>closed cabin or</u> <u>wearing appropriate PPE</u>.
- <u>Professional seed treatment</u> (including on-farm) performed with <u>dedicated</u> <u>seed treatment equipment.</u>
- <u>Aerial application outside of populated</u> <u>areas</u> if carried out by professional applicators, without the use of human flaggers, and where workers and local populations are adequately protected from spray (drift) and/or deposits.
 - Chemigation in North America

To be avoided: Potential higher risk of operator, worker and bystander exposure due to use pattern parameters

- <u>Greenhouse uses</u> and all permanently or temporarily covered crop uses
 - <u>Knapsack sprayer</u> and <u>mist blower</u> atomizer applications
- Aerial application in populated areas
 - Hand-harvested crops,
 - <u>Orchard, plantation and vineyard</u> <u>crops</u>
- <u>Fruiting vegetables (</u>e.g. cucumbers, tomatoes, aubergines)
- Non-professional / non-agricultural uses, (<u>Home and amenity uses</u> <u>including lawns, gardens and turf</u> <u>greens</u>) ornamentals and forestry

Raver has avoided registrations in ALL of Area

Additional impact on Food Quality & Final Produce

Not only efficacy needs to be determined...

Healthy food of high quality requires innovation

Regulatory Affairs The registration - our license to sell...

OO7 The Licence to Sell

Compilation of core Dossiers for submission and coordination of submissions & registrations worldwide

Changing Regulatory Environment

Increasing co-operation between authorities

Increasing data requirements

Growing importance of global trade

Increased data transparency

Strong and increasing pressure by NGOs

Increasing political influence

- EU and US-EPA 'sell' their regulations
- Worksharing, information exchange
- New study types, more complex risk assessments
- Local study requests, introduction of GLP ('good laboratory practice')
- Countries forced to adapt global standards
- Need for global strategy to achieve Maximum Residue Levels (MRLs)
- Evaluations available in the internet
- Accessible to the public
- Perceived in public as having more credibility
- In contrast to industry accepted as negotiation partner
- 'Green thinking', protectionism

Changing Regulatory Environment –AIR process

- Stringent renewal AIR process (AIR1, AIR2, AIR3, AIR4)
- Example: Period Jan-Sept 2017:
 - >10 substances with non-renewal decision
 - >10 substances with critical EfSA conclusio
 - >20 substances not submitted in AIR 4
- Re-registration not requested by applicant, Commission nonrenewal decision, EFSA non-renewal proposal, Critical ECHA classification decision
- Over 30 substances are pending decisions, several nonapprovals expected
- Products thus needs to be handled responsibly & with care
 - Not overuse (risk of resistance)
 - Manage crop uses resistance

Minor crop registrations: Risks we are facing

- We have to acknowledge the efforts of all (Industries and Regulators) to address the issue
- Adopting and implementing Global label recommendations and Global residues is risky:
 - Products act differently on different crops and under different conditions
 - Residue levels can differ (extrapolating Apricot -> Nectarines -> Peach risky because of skin differences)
 - Rates in SA often differ from Global rates

Are we (Manufacturer, Authorities, Industry) willing to take these risks ?Name of Presenter • Date • Slide 28

Thank you for your attention

Our Websites

CropLife Africa Middle East www.croplifeafrica.org

> CropLife International www.croplife.org

